What is Light?

- Light has both wave-like and particle-like properties.

- In the 1600s, a Dutch scientist named Christiaan Huygens showed that light behaves like a wave (Grandinetti.org).
Properties of Waves

- **Frequency**: The number of crests that pass a given point within 1 second.
- One cycle per second is called a Hertz (Hz).
- Written as $1/s$ or s^{-1}.
Properties of Waves

- **Wavelength**: The distance between crests.
- Wavelength and frequency are inversely proportional:

 Shorter wavelength = higher frequency

- \(c = \lambda v \) where \(\lambda \) is wavelength (m), \(v \) is frequency (Hz), and \(c \) is the speed of light (3.00 \(\times \) 10^8 m/s)
Properties of Waves

- **Amplitude**: The vertical distance between the tip of a crest and the wave's central axis. Associated with the brightness or intensity of the wave (nasa.gov).
Properties of Waves

- **Period**: The length of time it takes for one wavelength to pass by a given point in space (khanacademy.org).

\[T = \frac{1}{f} \]

The lower the frequency is the longer the time period will be.
What are Photons?

- Light is comprised of photons - discrete packets of energy (nasa.gov).
- In other words, 1 photon is a very small amount of light.
- Photons are quantized
Photons contd.

- When an atom/molecule loses energy, it emits a photon that carries an energy equal to the loss in energy of the atom/molecule.
- Planck’s Equation

\[E = h \nu \]

Where \(E \) is the energy of the photon absorbed or emitted (J), \(\nu \) is the frequency of the photon (Hz), and \(h \) is Planck’s constant \((6.626 \times 10^{-34} \text{ J} \cdot \text{S}) \)
The Electromagnetic Spectrum

- Defined as the classification of electromagnetic waves according to their various wavelengths/frequencies.
What are Polarizers?

https://www.youtube.com/watch?v=MhhHPOxTUy8
Polarization

- Light can be polarized.

- **Polarization** - The measurement of the electromagnetic field’s alignment (nasa.gov).
Applications

- **Cameras** use polarizer filters to reduce glare from water and to manage reflections.

- Polarized **3D glasses** restrict the amount of light that reaches each eye for a 3D effect.
Thank you for your attention :D

Be Happy 'Cause Its Lunch Time

KeepCalmAndPosters.com