KNOT THEORY

Sarah Burnett
Girls Talk Math
7/16/2018

Motivation

- String Theory - beginning of the universe
- Topology - how many ways can a 2D circle be embedded in a 3D space
- DNA
- Plasma reconnection
- It's fun and makes me feel like a wizard.

Knot diagrams

Hopf Link

Types of knots:

Unknot

Types of knots:

Left-handed trefoil

Types of knots:

Right-handed trefoil

Reidemeister Moves

(equivalence relations)

- R1:

$$
l=\Omega=l
$$

- R 2 :

- R3:

...how is this math?

Polynomials

- Examples of polynomials:

$$
\begin{gathered}
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0} \\
2 x+1, a x^{2}+b x+c
\end{gathered}
$$

- Polynomials of a knot, D_{1}, is represented by

$$
J\left(D_{1}\right)
$$

Polynomial Invariants

- Goal: We want the polynomial of two equivalent knots to be invariant under the Reidemeister moves.
- Let D_{1} be a knot, let D_{2} be a knot after R1, R2, R3. Then,

$$
J\left(D_{1}\right)=J\left(D_{2}\right)
$$

- We now search for the polynomial rules to suit this sweet property!
- Bracket Polynomials
- Jones Polynomials

Bracket Polynomials

- The rules:

$$
\begin{aligned}
& 1: \\
& 2:\langle D O\rangle=c\langle D\rangle ; \\
& 3:\langle O\rangle=1
\end{aligned}
$$

Bracket Polynomials

- The rules, now invariant under R2 and R3:

$$
\begin{aligned}
& 1: \\
& 2:\langle D\rangle=a \mid \\
& 3:\langle O\rangle=1
\end{aligned}
$$

$$
\langle X\rangle=a\langle \rangle\rangle+a^{-l}(\nearrow)
$$

...what about R1?

Jones Polynomials

- Apply orientation to our knots.
- Represent knots with the Kauffman Polynomial

$$
X(D)=(-a)^{-3 w(D)}\langle D\rangle
$$

where

Knot Addition

- Knots can be made from adding two other knots!
- Mathematically you add knots by multiplying their polynomials.
- What are prime knots?
- Knots like numbers, can be broken into prime factors.
- Examples of prime knots: trefoils, Hopf link
- Seifert Surfaces

Braids

■ Definition: A braid of n strands is a collection of $2 n$ points, arranged in two columns, connected by n strings. Strings travel from right to left (there is no "double-back").

Braid

Not a braid

Braids

- How many braids can you have with one strand?
- Only one!
- How many braids can you have on two strands?
- Infinitely many!

